
sanjon padnsbaw hjuo Gu?nval 'sasdnך100 no?̣psodiadns Guo 'جuawadns oam dagf \forall
Clo>17า

S? DNOOJnO pophuOD
 hilompoab suoyponado

Hadamard Gate

The Coin Flip of Quantum!
When the input is 0 , it outputs 0 or 1 with a 50/50 chance.

When the input is 1,
it also outputs 0 or 1
with a so/so chance.

$$
\begin{aligned}
& 0-\boldsymbol{H}-\begin{array}{l}
50 \%: 0 \\
50 \%: 1
\end{array} \\
& 1-\boldsymbol{H}-\begin{array}{l}
50 \%: 0 \\
50 \%: 1
\end{array}
\end{aligned}
$$

7nsed ypor fo samplาquqoad ayA aGuoya aวno дo sanjon 110 no apouado :M00 swonpadado winpuone)

HTMS 21 o fo Gin1.90goid 2M1 Jsnipo vos non 'saMiJ刀MOS

Hadamard Gate in Quantum Notation
$|0\rangle-H-\frac{|0\rangle+|1\rangle}{\sqrt{2}}$

$$
|1\rangle-\Pi \quad-\frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

Or, more generally...

$$
\alpha|0\rangle+\beta|1\rangle-H-\frac{\alpha+\beta}{\sqrt{2}}|0\rangle+\frac{\alpha-\beta}{\sqrt{2}}|1\rangle
$$

But what exactly is H ?

$$
\boldsymbol{H}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

1230
7o sampon ona PTOM SGMIMA DWOS

Find more Quantum Computing zines here:
hetps://wwww,epiqc.cs.uchicago,edu/resources/

September 2019, v3
This work is funded in part by EPIQC, an NSF Expedition in Computing, under grant 1730449

1201020 SabOWM OMA PlOM sainapid 2 MOS

Quantum

 Superposition zntosuboerfron

