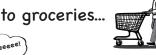


NO-CLONING THEOREM

HOW DO YOU GET SOMETHING FROM ONE PLACE TO ANOTHER?

You move it, of course!



WE MOVE THINGS ALL THE TIME!

From books...

...to groceries...

...to people!

WE ALSO MOVE INFORMATION!

Talking!

Texting!

Sending

COMPUTERS ALSO DO THIS!

(That's how they calculate things!)

"You have 99 unread messages."

"5 + 7 = 12"

The nearest ice cream shop is 1 mile away."

QUANTUM COMPUTERS DO, TOO!

They just store information in a bit of a weird way.

QUANTUM COMPUTERS STORE INFORMATION IN QUBITS

The information stored in a qubit at any moment is called its "state."

Other things have states, too:

A TV has two basic states: "on" and "off"!

Your emotions are a kind of state for how you're feeling: Happy, Sad, Angry, etc.

Qubits can be in one of the basic states of "0" or "1" or something much more complex!

HOW CAN WE SEND STATES ? IN QUANTUM COMPUTING?

Say Alice wants to send Bob a qubit in the n state.

Alice could ship her qubit to Bob, but complex qubit states are VERY FRAGILE!

Light, heat, and vibration can change a qubit's state unintentionally - this is called "decoherence."

Imagine walking to a friend's house with an ice cream cream cone on a hot

summer

YIKES!!

DECOHERENCE CAUSES INFORMATION TO BE LOST!

Alice should look for a safer way to send her message!

Could Alice just send a COPY of her gubit?

THE NO-CLONING RULE

We copy & send information all the time in real life...

The No Cloning Rule: I'm just one A qubit's state cannot be of a kind! copied to another qubit without changing the original.

So how can Alice send her qubit to Bob? See the Quantum Teleportation zine to find out!

FIND MORE QUANTUM COMPUTING ZINES HERE:

https://www.epiqc.cs.uchicago.edu/resources/

Contributions by Sabine Salnave

April 2024

This work is funded in part by EPiQC, an NSF Expedition in Computing, under grant 1730449 & Q2Work under grant 2039745)

